Sodium Butyrate Enhances Curcuminoids Permeability through the Blood-Brain Barrier, Restores Wnt/β-Catenin Pathway Antagonists Gene Expression and Reduces the Viability of Glioblastoma Cells

丁酸钠可增强姜黄素穿过血脑屏障的通透性、恢复 Wnt/β-Catenin 通路拮抗剂基因表达并降低胶质母细胞瘤细胞的活力

阅读:4
作者:Aleksandra Majchrzak-Celińska, Robert Kleszcz, Anna Stasiłowicz-Krzemień, Judyta Cielecka-Piontek

Abstract

Glioblastoma (GBM) is an extremely aggressive brain tumor awaiting novel, efficient, and minimally toxic treatment. Curcuminoids (CCM), polyphenols from Curcuma longa, and sodium butyrate (NaBu), a histone deacetylase inhibitor naturally occurring in the human body, await elucidation as potential anti-GBM agents. Thus, the aim of this study was to analyze CCM and NaBu both separately and as a combination treatment using three GBM cell lines. MTT was used for cytotoxicity evaluation, and the combination index was calculated for synergism prediction. Cell cycle, apoptosis, and reactive oxygen species (ROS) generation were analyzed using flow cytometry. DNA methylation was verified by MS-HRM and mRNA expression by qPCR. The permeability through the blood-brain barrier (BBB) and through the nasal cavity was evaluated using PAMPA model. The results of this study indicate that CCM and NaBu synergistically reduce the viability of GBM cells inducing apoptosis and cell cycle arrest. These effects are mediated via ROS generation and changes in gene expression, including upregulation of Wnt/β-catenin pathway antagonists, SFRP1, and RUNX3, and downregulation of UHRF1, the key epigenetic regulator. Moreover, NaBu ameliorated CCM permeability through the BBB and the nasal cavity. We conclude that CCM and NaBu are promising agents with anti-GBM properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。