Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging

通过单分子成像全面表征 GPCR 单体-二聚体动态平衡

阅读:8
作者:Rinshi S Kasai, Kenichi G N Suzuki, Eric R Prossnitz, Ikuko Koyama-Honda, Chieko Nakada, Takahiro K Fujiwara, Akihiro Kusumi

Abstract

Receptor dimerization is important for many signaling pathways. However, the monomer-dimer equilibrium has never been fully characterized for any receptor with a 2D equilibrium constant as well as association/dissociation rate constants (termed super-quantification). Here, we determined the dynamic equilibrium for the N-formyl peptide receptor (FPR), a chemoattractant G protein-coupled receptor (GPCR), in live cells at 37°C by developing a single fluorescent-molecule imaging method. Both before and after liganding, the dimer-monomer 2D equilibrium is unchanged, giving an equilibrium constant of 3.6 copies/µm(2), with a dissociation and 2D association rate constant of 11.0 s(-1) and 3.1 copies/µm(2)s(-1), respectively. At physiological expression levels of ∼2.1 receptor copies/µm(2) (∼6,000 copies/cell), monomers continually convert into dimers every 150 ms, dimers dissociate into monomers in 91 ms, and at any moment, 2,500 and 3,500 receptor molecules participate in transient dimers and monomers, respectively. Not only do FPR dimers fall apart rapidly, but FPR monomers also convert into dimers very quickly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。