Identifying Therapeutic Targets for Sepsis Research: A Characterization Study of the Inflammatory Players in the Cecal Ligation and Puncture Model

确定脓毒症研究的治疗目标:盲肠结扎穿刺模型中炎症因素的特征研究

阅读:8
作者:Sara Nullens, Joris De Man, Chris Bridts, Didier Ebo, Sven Francque, Benedicte De Winter

Abstract

During sepsis, disturbed gastrointestinal motility and increased mucosal permeability can aggravate sepsis due to the increased risk of bacterial translocation. To help identify new therapeutic targets, there is a need for animal models that mimic the immunological changes in the gastrointestinal tract as observed during human sepsis. We therefore characterized in detail the gastrointestinal neuroimmune environment in the cecal ligation and puncture (CLP) model, which is the gold standard animal model of microbial sepsis. Mice were sacrificed at day 2 and day 7, during which gastrointestinal motility was assessed and cytokines were measured in the serum and the colon. In the spleen, lymph nodes, ileum, and colon, subsets of leukocyte populations were identified by flow cytometry. Septic animals displayed an impaired gastrointestinal motility at day 2 and day 7. Two days post-CLP, increased serum and colonic levels of proinflammatory cytokines were measured. Flow cytometry revealed an influx of neutrophils in the colon and ileum, increased numbers of macrophages in the spleen and mesenteric lymph nodes, and an enhanced number of mast cells in all tissues. At day 7 post-CLP, lymphocyte depletion was observed in all tissues coinciding with increased IL-10 and TGF-β levels, as well as increased colonic levels of IL-17A and IFN-γ. Thus, CLP-induced sepsis in mice results in simultaneous activation of pro- and anti-inflammatory players at day 2 and day 7 in different tissues, mimicking human sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。