The Ibr-7 derivative of ibrutinib radiosensitizes pancreatic cancer cells by downregulating p-EGFR

依鲁替尼的 Ibr-7 衍生物通过下调 p-EGFR 增强胰腺癌细胞的放射敏感性

阅读:6
作者:Biqin Tan, Rong Dong, Bo Zhang, Youyou Yan, Qingyu Li, Fei Wang, Nengming Lin

Background

Radiotherapy is one of the main treatments for pancreatic cancer, but radiation resistance limits its clinical application. As a result, novel therapeutic agents to improve radiosensitivity are urgently needed. This study aimed to investigate the effect of Ibr-7 (a derivative of ibrutinib) on the radiosensitivity of human pancreatic cancer cells.

Conclusions

Our study indicated the potential application of Ibr-7 as a highly effective radiosensitizer for the treatment of pancreatic cancer cells.

Methods

The effect of Ibr-7 on pancreatic cancer cell proliferation was detected by CCK-8 assays. Radiosensitivity was assessed by clonogenic formation assays. Cell cycle and cell apoptosis were analysed by flow cytometry. DNA damage was evaluated by immunofluorescence analysis. The expression levels of PARP, Cleaved caspase 3, p-EGFR and EGFR were determined by western blot.

Results

Ibr-7 showed an anti-proliferative effect on PANC-1 and Capan2 cells in a dose- and time-dependent manner. Ibr-7 (2 μmol/L) enhanced the effect of radiation on PANC-1 and Capan2 cells. Further findings showed that this combination enhanced G2/M phase arrest and increased cell apoptosis. Additional molecular mechanism studies revealed that the expression of p-EGFR was decreased by Ibr-7 alone or in combination with radiation. Overexpression of p-EGFR reversed the cell apoptosis induced by Ibr-7 combined with radiation. Moreover, the expression of γ-H2AX was significantly decreased in the Ibr-7 plus radiation group. Conclusions: Our study indicated the potential application of Ibr-7 as a highly effective radiosensitizer for the treatment of pancreatic cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。