MSK1-Mediated β-Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma

MSK1 介导的 β-Catenin 磷酸化使胶质母细胞瘤对 PI3K/mTOR 抑制剂产生抗性

阅读:9
作者:Shaofang Wu, Shuzhen Wang, Siyuan Zheng, Roel Verhaak, Dimpy Koul, W K Alfred Yung

Abstract

Glioblastoma (GBM) represents a compelling disease for kinase inhibitor therapy because most of these tumors harbor genetic alterations that result in aberrant activation of growth factor-signaling pathways. The PI3K/mammalian target of the rapamycin (mTOR) pathway is dysregulated in over 50% of human GBM but remains a challenging clinical target. Inhibitors against PI3K/mTOR mediators have limited clinical efficacy as single agents. We investigated potential bypass mechanisms to PI3K/mTOR inhibition using gene expression profiling before and after PI3K inhibitor treatment by Affymetrix microarrays. Mitogen- and stress-activated protein kinase 1 (MSK1) was markedly induced after PI3K/mTOR inhibitor treatment and disruption of MSK1 by specific shRNAs attenuated resistance to PI3K/mTOR inhibitors in glioma-initiating cells (GIC). Further investigation showed that MSK1 phosphorylates β-catenin and regulates its nuclear translocation and transcriptional activity. The depletion of β-catenin potentiated PI3K/mTOR inhibitor-induced cytotoxicity and the inhibition of MSK1 synergized with PI3K/mTOR inhibitors to extend survival in an intracranial animal model and decreased phosphorylation of β-catenin at Ser(552) These observations suggest that MSK1/β-catenin signaling serves as an escape survival signal upon PI3K/mTOR inhibition and provides a strong rationale for the combined use of PI3K/mTOR and MSK1/β-catenin inhibition to induce lethal growth inhibition in human GBM. Mol Cancer Ther; 15(7); 1656-68. ©2016 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。