Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7

E3 泛素连接酶 Fbw7 控制造血干细胞静止

阅读:11
作者:Benjamin J Thompson, Vladimir Jankovic, Jie Gao, Silvia Buonamici, Alan Vest, Jennifer May Lee, Jiri Zavadil, Stephen D Nimer, Iannis Aifantis

Abstract

Ubiquitination is a posttranslational mechanism that controls diverse cellular processes. We focus here on the ubiquitin ligase Fbw7, a recently identified hematopoietic tumor suppressor that can target for degradation several important oncogenes, including Notch1, c-Myc, and cyclin E. We have generated conditional Fbw7 knockout animals and inactivated the gene in hematopoietic stem cells (HSCs), progenitors, and their differentiated progeny. Deletion of Fbw7 specifically and rapidly affects hematopoiesis in a cell-autonomous manner. Fbw7(-/-) HSCs show defective maintenance of quiescence, leading to impaired self-renewal and a severe loss of competitive repopulating capacity. Furthermore, Fbw7(-/-) progenitors are unable to colonize the thymus, leading to a profound depletion of T cell progenitors. Deletion of Fbw7 in bone marrow (BM) stem cells and progenitors leads to the stabilization of c-Myc, a transcription factor previously implicated in HSC self-renewal. On the other hand, neither Notch1 nor cyclin E is visibly stabilized in the BM of Fbw7-deficient mice. Gene expression studies of Fbw7(-/-) HSCs and hematopoietic progenitors indicate that Fbw7 regulates, through the regulation of HSC cycle entry, the transcriptional "signature" that is associated with the quiescent, self-renewing HSC phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。