MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress

盐胁迫下microRNA414c通过调控活性氧代谢影响棉花的耐盐性

阅读:6
作者:Wei Wang, Dan Liu, Dongdong Chen, Yingying Cheng, Xiaopei Zhang, Lirong Song, Mengjiao Hu, Jie Dong, Fafu Shen

Abstract

Salinity stress is a major abiotic stress affecting the productivity and fiber quality of cotton. Although reactive oxygen species (ROS) play critical roles in plant stress responses, their complex molecular regulatory mechanism under salinity stress is largely unknown in cotton, especially microRNA (miRNA)-mediated regulation of superoxide dismutase gene expression. Here, we report that a cotton iron superoxide dismutase gene GhFSD1 and the cotton miRNA ghr-miR414c work together in response to salinity stress. The miRNA ghr-miR414c targets the coding sequence region of GhFSD1, inhibiting expression of transcripts of this antioxidase gene, which represents the first line of defense against stress-induced ROS. Expression of GhFSD1 was induced by salinity stress. Under salinity stress, ghr-miR414c showed expression patterns opposite to those of GhFSD1. Ectopic expression of GhFSD1 in Arabidopsis conferred salinity stress tolerance by improving primary root growth and biomass, whereas Arabidopsis constitutively expressing ghr-miR414c showed hypersensitivity to salinity stress. Silencing GhFSD1 in cotton caused an excessive hypersensitive phenotype to salinity stress, whereas overexpressing miR414c decreased the expression of GhFSD1 and increased sensitivity to salinity stress, yielding a phenotype similar to that of GhFSD1-silenced cotton. Taken together, our results demonstrated that ghr-miR414c was involved in regulation of plant response to salinity stress by targeting GhFSD1 transcripts. This study provides a new strategy and method for plant breeding in order to improve plant salinity tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。