Rutin inhibits DRP1-mediated mitochondrial fission and prevents ethanol-induced hepatotoxicity in HepG2 cells and zebrafish

芦丁抑制 DRP1 介导的线粒体裂变并预防乙醇引起的 HepG2 细胞和斑马鱼肝毒性

阅读:9
作者:Youngsook Choi, Heymin Seo, Mina Cho, Joohee Kim, Hak Suk Chung, Icksoo Lee, Min Jung Kim

Abstract

Excessive alcohol consumption causes the cellular and tissue damage. The toxic metabolites of ethanol are harmful to multiple organ systems, such as the central nervous system, skeletal muscles, and liver, and cause alcohol-induced diseases like cancer, as well as induce hepatotoxicity, and alcoholic myopathy. Alcohol exposure leads to a surge in hepatic alcohol metabolism and oxygen consumption, a decrease in hepatic ATP, and the rapid accumulation of lipid within hepatocytes. Several pathologies are closely linked to defective mitochondrial dynamics triggered by abnormal mitochondrial function and cellular homeostasis, raising the possibility that novel drugs targeting mitochondrial dynamics may have therapeutic potential in restoring cellular homeostasis in ethanol-induced hepatotoxicity. Rutin is a phytochemical polyphenol known to protect cells from cytotoxic chemicals. We investigated the effects of rutin on mitochondrial dynamics induced by ethanol. We found that rutin enhances mitochondrial dynamics by suppressing mitochondrial fission and restoring the balance of the mitochondrial dynamics. Mitochondrial elongation following rutin treatment of ethanol exposed cells was accompanied by reduced DRP1 expression. These data suggest that rutin plays an important role in remodeling of mitochondrial dynamics to alleviate hepatic steatosis and enhance mitochondrial function and cell viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。