A combined computational pipeline to detect circular RNAs in human cancer cells under hypoxic stress

检测缺氧应激下人类癌细胞中环状 RNA 的组合计算流程

阅读:7
作者:Antonella Di Liddo, Camila de Oliveira Freitas Machado, Sandra Fischer, Stefanie Ebersberger, Andreas W Heumüller, Julia E Weigand, Michaela Müller-McNicoll, Kathi Zarnack

Abstract

Hypoxia is associated with several diseases, including cancer. Cells that are deprived of adequate oxygen supply trigger transcriptional and post-transcriptional responses, which control cellular pathways such as angiogenesis, proliferation, and metabolic adaptation. Circular RNAs (circRNAs) are a novel class of mainly non-coding RNAs, which have been implicated in multiple cancers and attract increasing attention as potential biomarkers. Here, we characterize the circRNA signatures of three different cancer cell lines from cervical (HeLa), breast (MCF-7), and lung (A549) cancer under hypoxia. In order to reliably detect circRNAs, we integrate available tools with custom approaches for quantification and statistical analysis. Using this consolidated computational pipeline, we identify ~12000 circRNAs in the three cancer cell lines. Their molecular characteristics point to an involvement of complementary RNA sequences as well as trans-acting factors in circRNA biogenesis, such as the RNA-binding protein HNRNPC. Notably, we detect a number of circRNAs that are more abundant than their linear counterparts. In addition, 64 circRNAs significantly change in abundance upon hypoxia, in most cases in a cell type-specific manner. In summary, we present a comparative circRNA profiling in human cancer cell lines, which promises novel insights into the biogenesis and function of circRNAs under hypoxic stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。