Conclusion
eEF1A2 knockdown induced neuroblastoma cell death, in part through the inhibition of Akt and mTOR, suggesting a potential role of eEF1A2 as a molecular target for neuroblastoma therapy.
Methods
Human SH-SY5Y neuroblastoma cells were transfected with small interfering RNA (siRNA) against eEF1A2. After 48 h of transfection, cell viability was assessed using an MTT assay. The mRNA expression of p53, Bax, Bcl-2, caspase-3 and members of the phosphoinositide 3-kinases (PI3K)/Akt/mTOR pathway was determined using quantitative real-time RT-PCR (qRT-PCR). The protein expression of Akt and mTOR was measured using Western blot analysis.
Results
eEF1A2 knockdown significantly decreased the viability of neuroblastoma cells. No significant changes were observed on the expression of p53, Bax/Bcl-2 ratio, and caspase-3 mRNAs; however, the upregulated trends were noted for the p53 and Bax/Bcl-2 ratio. eEF1A2 knockdown significantly inhibited the phosphorylation of both Akt and mTOR. Almost all of the class I (PIK3CA, PIK3CB, and PIK3CD) and all of the class II PI3K genes were slightly increased in tumor cells with eEF1A2 knockdown. In addition, a slightly decreased expression of the Akt2, mTORC1, and mTORC2 was observed.