Quantification and Improvement of the Dynamics of Human Serum Albumin and Glycated Human Serum Albumin with Astaxanthin/Astaxanthin-Metal Ion Complexes: Physico-Chemical and Computational Approaches

用虾青素/虾青素-金属离子复合物对人血清白蛋白和糖化人血清白蛋白的动力学进行量化和改进:物理化学和计算方法

阅读:5
作者:Syahputra Wibowo, Jessica Costa, Maria Camilla Baratto, Rebecca Pogni, Sri Widyarti, Akhmad Sabarudin, Koichi Matsuo, Sutiman Bambang Sumitro

Abstract

Glycated human serum albumin (gHSA) undergoes conformational changes and unfolding events caused by free radicals. The glycation process results in a reduced ability of albumin to act as an endogenous scavenger and transporter protein in diabetes mellitus type 2 (T2DM) patients. Astaxanthin (ASX) in native form and complexed with metal ions (Cu2+ and Zn2+) has been shown to prevent gHSA from experiencing unfolding events. Furthermore, it improves protein stability of gHSA and human serum albumin (HSA) as it is shown through molecular dynamics studies. In this study, the ASX/ASX-metal ion complexes were reacted with both HSA/gHSA and analyzed with electronic paramagnetic resonance (EPR) spectroscopy, rheology and zeta sizer (particle size and zeta potential) analysis, circular dichroism (CD) spectroscopy and UV-Vis spectrophotometer measurements, as well as molecular electrostatic potential (MEP) and molecular docking calculations. The addition of metal ions to ASX improves its ability to act as an antioxidant and both ASX or ASX-metal ion complexes maintain HSA and gHSA stability while performing their functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。