Manufacturing of Conductive, Wear-Resistant Nanoreinforced Cu-Ti Alloys Using Partially Oxidized Electrolytic Copper Powder

利用部分氧化电解铜粉制造导电耐磨纳米增强铜钛合金

阅读:8
作者:Stepan Vorotilo, Pavel Alexandrovich Loginov, Alexandr Yuryevich Churyumov, Alexey Sergeevich Prosviryakov, Marina Yakovlevna Bychkova, Sergey Ivanovich Rupasov, Anton Sergeevich Orekhov, Philipp Vladimirovich Kiryukhantsev-Korneev, Evgeny Alexandrovich Levashov

Abstract

Reactive powder composites Cu-(0-15%)TiH2 containing up to 5% native Cu2O were manufactured by high energy ball milling and then hot-pressed to produce bulk nanostructured copper-matrix alloys reinforced by Cu3Ti3O inclusions. Two high-energy ball-milling (HEBM) protocols were employed for the fabrication of Cu-Ti alloys: single-stage and two-stage ball milling, resulting in an order of magnitude refinement of TiH2 particles in the reactive mixtures. Single-stage HEBM processing led to the partial retention of Ti in the microstructure of hot-pressed specimens as the α-Ti phase and formation of fine-grained (100-200 nm) copper matrix interspersed with 5-20 nm Cu3Ti3O precipitates, whereas the two-stage HEBM led to the complete conversion of TiH2 into the Cu3Ti3O phase during the hot pressing but produced a coarser copper matrix (1-2 μm) with 0.1-0.2 μm wide polycrystalline Cu3Ti3O layers on the boundaries of Cu grains. The alloy produced using single-stage HEBM was characterized by the highest strength (up to 950 MPa) and electrical conductivity (2.6 × 107 Sm/m) as well as the lowest specific wear rate (1.1 × 10-5 mm3/N/m). The tribological performance of the alloy was enhanced by the formation of Cu3Ti3O microfibers in the wear debris, which reduced the friction coefficient against the Al2O3 counter-body. The potential applications of the developed alloys are briefly discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。