Intraneuronal vesicular organelle transport changes with cell population density in vitro

体外神经元内囊泡细胞器运输随细胞群密度的变化而变化

阅读:7
作者:Clayton T Bauer, Yuri Shtridelman, Carla M Lema Tomé, Joel Q Grim, Christopher P Turner, Michael Tytell, Jed C Macosko

Abstract

Primary neuron cultures are widely used in research due to the ease and usefulness of observing individual cells. Therefore, it is vital to understand how variations in culture conditions may affect neuron physiology. One potential variation for cultured neurons is a change in intracellular transport. As transport is necessary for the normal delivery of organelles, proteins, nucleic acids, and lipids, it is a logical indicator of a cell's physiology. We test the hypothesis that organelle transport may change with varying in vitro population densities, thus indicating a change in cellular physiology. Using a novel background subtraction imaging method we show that, at 5 days in vitro (DIV), transport of vesicular organelles in embryonic rat spinal cord neurons is positively correlated with cell density. When density increased 6.5-fold, the number of transported organelles increased 2.2+/-0.3-fold. Intriguingly, this effect was not observable at 3-4 DIV. These results show a significant change in cellular physiology with a relatively small change in plating procedure; this indicates that cells appearing to be morphologically similar, and at the same DIV, may still suffer from a great degree of variability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。