Transcriptomic and Physiological Responses to Oxidative Stress in a Chlamydomonas reinhardtii Glutathione Peroxidase Mutant

莱茵衣藻谷胱甘肽过氧化物酶突变体对氧化应激的转录组和生理反应

阅读:5
作者:Xiaocui Ma, Baolong Zhang, Rongli Miao, Xuan Deng, You Duan, Yingyin Cheng, Wanting Zhang, Mijuan Shi, Kaiyao Huang, Xiao-Qin Xia

Abstract

Aerobic photosynthetic organisms such as algae produce reactive oxygen species (ROS) as by-products of metabolism. ROS damage biomolecules such as proteins and lipids in cells, but also act as signaling molecules. The mechanisms that maintain the metabolic balance in aerobic photosynthetic organisms and how the cells specifically respond to different levels of ROS are unclear. Glutathione peroxidase (GPX) enzymes detoxify hydrogen peroxide or organic hydroperoxides, and thus are important components of the antioxidant system. In this study, we employed a Chlamydomonas reinhardtii glutathione peroxidase knockout (gpx5) mutant to identify the genetic response to singlet oxygen (1O2) generated by the photosensitizer rose bengal (RB). To this end, we compared the transcriptomes of the parental strain CC4348 and the gpx5 mutant sampled before, and 1 h after, the addition of RB. Functional annotation of differentially expressed genes showed that genes encoding proteins related to ROS detoxification, stress-response-related molecular chaperones, and ubiquitin-proteasome pathway genes were upregulated in CC4338. When GPX5 was mutated, higher oxidative stress specifically induced the TCA cycle and enhanced mitochondrial electron transport. Transcription of selenoproteins and flagellar-associated proteins was depressed in CC4348 and the gpx5 mutant. In addition, we found iron homeostasis played an important role in maintaining redox homeostasis, and we uncovered the relationship between 1O2 stress and iron assimilation, as well as selenoproteins. Based on the observed expression profiles in response to different levels of oxidative stress, we propose a model for dose-dependent responses to different ROS levels in Chlamydomonas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。