Salvianolic acid B ameliorates myocardial fibrosis in diabetic cardiomyopathy by deubiquitinating Smad7

丹酚酸 B 通过去泛素化 Smad7 改善糖尿病心肌病中的心肌纤维化

阅读:4
作者:Hong Luo, Lingyun Fu, Xueting Wang, Yini Xu, Ling Tao, Xiangchun Shen

Background

Salvianolic acid B (Sal B), a water-soluble phenolic compound derived from Salvia miltiorrhiza Bunge, is commonly used in Traditional Chinese Medicine to treat cardiovascular disease. In our previous study, Sal B protected against myocardial fibrosis induced by diabetic cardiomyopathy (DCM). This study aimed to investigate the ameliorative effects and potential mechanisms of Sal B in mitigating myocardial fibrosis induced by DCM.

Conclusion

This study revealed that Sal B can improve myocardial fibrosis in DCM by deubiquitinating Smad7, stabilizing the protein expression of Smad7, and blocking the TGF-β1 signaling pathway.

Methods

Various methods were used to investigate the effects of Sal B on myocardial fibrosis induced by DCM in vivo and in vitro. These methods included blood glucose measurement, echocardiography, HE staining, Masson's trichrome staining, Sirius red staining, cell proliferation assessment, determination of hydroxyproline levels, immunohistochemical staining, evaluation of fibrosis-related protein expression (Collagen-I, Collagen-III, TGF-β1, p-Smad3, Smad3, Smad7, and α-smooth muscle actin), analysis of Smad7 gene expression, and analysis of Smad7 ubiquitin modification.

Results

The animal test results indicated that Sal B significantly improved cardiac function, inhibited collagen deposition and phenotypic transformation, and ameliorated myocardial fibrosis in DCM by upregulating Smad7, thereby inhibiting the TGF-β1 signaling pathway. In addition, cell experiments demonstrated that Sal B significantly inhibited the proliferation, migration, phenotypic transformation, and collagen secretion of cardiac fibroblasts (CFs) induced by high glucose (HG). Sal B significantly decreased the ubiquitination of Smad7 and stabilized the protein expression of Smad7, thereby increasing the protein expression of Smad7 in CFs and inhibiting the TGF-β1 signaling pathway, which may be the potential mechanism by which Sal B mitigates myocardial fibrosis induced by DCM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。