Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1

静脉注射 AAV 介导的 Hamartin 替代疗法对 1 型结节性硬化症小鼠模型的长期治疗效果

阅读:4
作者:Shilpa Prabhakar, Pike See Cheah, Xuan Zhang, Max Zinter, Maria Gianatasio, Eloise Hudry, Roderick T Bronson, David J Kwiatkowski, Anat Stemmer-Rachamimov, Casey A Maguire, Miguel Sena-Esteves, Bakhos A Tannous, Xandra O Breakefield

Abstract

Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome caused by mutations in TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins act as a complex that inhibits mammalian target of rapamycin (mTOR)-mediated cell growth and proliferation. Loss of either protein leads to overgrowth in many organs, including subependymal nodules, subependymal giant cell astrocytomas, and cortical tubers in the human brain. Neurological manifestations in TSC include intellectual disability, autism, hydrocephalus, and epilepsy. In a stochastic mouse model of TSC1 brain lesions, complete loss of Tsc1 is achieved in homozygous Tsc1-floxed mice in a subpopulation of neural cells in the brain by intracerebroventricular (i.c.v.) injection at birth of an adeno-associated virus (AAV) vector encoding Cre recombinase. This results in median survival of 38 days and brain pathology, including subependymal lesions and enlargement of neuronal cells. Remarkably, when these mice were injected intravenously on day 21 with an AAV9 vector encoding hamartin, most survived at least up to 429 days in apparently healthy condition with marked reduction in brain pathology. Thus, a single intravenous administration of an AAV vector encoding hamartin restored protein function in enough cells in the brain to extend lifespan in this TSC1 mouse model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。