Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition

含有黏连蛋白成分 STAG2 突变的胶质母细胞瘤细胞对 PARP 抑制敏感

阅读:9
作者:Melanie L Bailey, Nigel J O'Neil, Derek M van Pel, David A Solomon, Todd Waldman, Philip Hieter

Abstract

Recent data have identified STAG2, a core subunit of the multifunctional cohesin complex, as a highly recurrently mutated gene in several types of cancer. We sought to identify a therapeutic strategy to selectively target cancer cells harboring inactivating mutations of STAG2 using two independent pairs of isogenic glioblastoma cell lines containing either an endogenous mutant STAG2 allele or a wild-type STAG2 allele restored by homologous recombination. We find that mutations in STAG2 are associated with significantly increased sensitivity to inhibitors of the DNA repair enzyme PARP. STAG2-mutated, PARP-inhibited cells accumulated in G2 phase and had a higher percentage of micronuclei, fragmented nuclei, and chromatin bridges compared with wild-type STAG2 cells. We also observed more 53BP1 foci in STAG2-mutated glioblastoma cells, suggesting that these cells have defects in DNA repair. Furthermore, cells with mutations in STAG2 were more sensitive than cells with wild-type STAG2 when PARP inhibitors were used in combination with DNA-damaging agents. These data suggest that PARP is a potential target for tumors harboring inactivating mutations in STAG2, and strongly recommend that STAG2 status be determined and correlated with therapeutic response to PARP inhibitors, both prospectively and retrospectively, in clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。