Protocadherin-19 and N-cadherin interact to control cell movements during anterior neurulation

原钙粘蛋白-19和N-钙粘蛋白相互作用控制前神经形成过程中的细胞运动

阅读:6
作者:Sayantanee Biswas, Michelle R Emond, James D Jontes

Abstract

The protocadherins comprise the largest subgroup within the cadherin superfamily, yet their cellular and developmental functions are not well understood. In this study, we demonstrate that pcdh 19 (protocadherin 19) acts synergistically with n-cadherin (ncad) during anterior neurulation in zebrafish. In addition, Pcdh 19 and Ncad interact directly, forming a protein-protein complex both in vitro and in vivo. Although both molecules are required for calcium-dependent adhesion in a zebrafish cell line, the extracellular domain of Pcdh 19 does not exhibit adhesive activity, suggesting that the involvement of Pcdh 19 in cell adhesion is indirect. Quantitative analysis of in vivo two-photon time-lapse image sequences reveals that loss of either pcdh 19 or ncad impairs cell movements during neurulation, disrupting both the directedness of cell movements and the coherence of movements among neighboring cells. Our results suggest that Pcdh 19 and Ncad function together to regulate cell adhesion and to mediate morphogenetic movements during brain development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。