Thermodynamic Characteristics and Selectivity of the Liquid-Phase Adsorption of Aromatic Compounds on Hypercrosslinked Polystyrene Networks with Ultimate-High Crosslinking Densities by Data of Liquid Chromatography

液相色谱数据研究芳香族化合物在超高交联密度聚苯乙烯网络上液相吸附的热力学特征及选择性

阅读:9
作者:Bulat R Saifutdinov, Aleksey K Buryak

Abstract

This study delves into the thermodynamics of liquid-phase adsorption on hypercrosslinked polystyrene networks (HPSNs), widely recognized for their distinct structure and properties. Despite the considerable progress in HPSN synthesis and characterization, gaps persist regarding the chromatographic retention mechanism, thermodynamics of adsorption, and their impact on the adsorption selectivity, especially in the case of networks with ultra-high crosslinking densities (up to 500%). Utilizing high-performance liquid chromatography (HPLC), we have explored, for the first time, the thermodynamic intricacies of liquid-phase adsorption onto HPSNs crosslinked in the entire range of the crosslinking degree from 100 to 500%. Our findings reveal the dependences of thermodynamic characteristics and selectivity of adsorption on the crosslinking degree, textural features, and liquid-phase composition in the region of extremely low adsorbent surface coverages (Henry's range). We have detected that, in the case of HPSNs, the dependence of the thermodynamic characteristics of adsorption on the liquid-phase composition is different than for classical HPLC stationary phases. Moreover, we scrutinize the impact of the molecular structure of the studied aromatic compounds on the thermodynamic characteristics and selectivity of the liquid-phase adsorption on HPSNs. Investigating liquid-phase adsorption selectivity, we demonstrate the pivotal role of π-π interactions in separating aromatic compounds on HPSNs. Eventually, we unveil that the thermodynamic characteristics of adsorption peculiarly depend on the crosslinking degree due to the profound impact of the crosslinking on the electronic density in benzene rings in HPSNs, whereas the separation throughput peaks for the polymer with a 500% crosslinking degree, attributed to its exceptionally rigid network structure, moderate swelling and micropore volume, and minimum specific surface area.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。