Screening of commercial cyclic peptide as inhibitor NS5 methyltransferase of Dengue virus through Molecular Docking and Molecular Dynamics Simulation

通过分子对接和分子动力学模拟筛选商业环肽作为登革病毒NS5甲基转移酶抑制剂

阅读:15
作者:Usman Sumo Friend Tambunan, Hilyatuz Zahroh, Bimo Budi Utomo, Arli Aditya Parikesit

Abstract

Dengue has become a major global health threat, especially in tropical and subtropical regions. The development of antiviral agent targeting viral replication is really needed at this time. NS5 methyltransferase presents as a novel antiviral target. This enzyme plays an important role in the methylation of 5'-cap mRNA. Inhibition of the NS5 methyltransferase could inhibit dengue virus replication. In this research, two sites of NS5 methyltransferase (S-Adenosyl methionine/SAM binding site and RNA-cap site) were used as targets for inhibition. As much as 300 commercial cyclic peptides were screened to these target sites by means of molecular docking. Analysis of ligand-enzyme binding free energy and pharmacological prediction revealed two best ligands, namely [Tyr123] Prepro Endothelin (110-130), amide, human and Urotensin II, human. According to molecular dynamic simulation, both ligands maintain a stable complex conformation between enzyme and ligand at temperature 310 K and 312 K. Hence, Urotensin II, human is more reactive at 312 K than at 310 K. However, both ligands can be used as potential inhibitor candidates against NS5 methyltransferase of dengue virus with Urotensin II, human exposes more promising activity at 312 K.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。