Neuron-derived neurotensin promotes pancreatic cancer invasiveness and gemcitabine resistance via the NTSR1/Akt pathway

神经元衍生的神经降压素通过 NTSR1/Akt 通路促进胰腺癌侵袭性和吉西他滨耐药性

阅读:6
作者:Yu-Hsuan Hung, Hui-Ching Wang, Shih-Han Hsu, Li-Yun Wang, Ya-Li Tsai, Yung-Yeh Su, Wen-Chun Hung, Li-Tzong Chen

Abstract

Perineural invasion and neurogenesis are frequently observed in pancreatic ductal adenocarcinoma (PDAC) and link to poor outcome. However, how neural factors affect PDAC prognosis and the underlying mechanism as well as counteracting therapeutic are still unclear. In silico systematic analysis was performed with PROGgene to identify potential neural factor and its receptor in pancreatic cancer. In vitro assays including migration, invasion, 3D recruitment, and gemcitabine resistance were performed to study the effect of neuron-derived neurotensin (NTS) on pancreatic cancer behavior. Orthotopic animal study was used to validate the in vitro findings. Gene set enrichment analysis (GSEA) was performed to confirm the results from in silico to in vivo. Expression of NTS and its receptor 1 (NTSR1) predicted poor prognosis in PDAC. NTS synthetic peptide or neuron-derived condition medium promoted pancreatic cancer invasiveness and recruitment in 2D and 3D assays. NTS-induced effects depended on NTSR1 and PI3K activation. GDC-0941, a clinically approved PI3K inhibitor, counteracted NTS-induced effects in vitro. Inhibition of NTSR1 in pancreatic cancer cells resulted in decreased tumor dissemination and diminished PI3K activation in vivo. NTS boosted gemcitabine resistance via NTSR1 in pancreatic cancer. Our results suggest that neural cell-secreted NTS plays an important role in promoting PDAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。