BET Inhibition Sensitizes Immunologically Cold Rb-Deficient Prostate Cancer to Immune Checkpoint Blockade

BET 抑制剂可使免疫冷性 Rb 缺乏的前列腺癌对免疫检查点阻断敏感

阅读:8
作者:Brian M Olson #, Kiranj Chaudagar, Riyue Bao, Sweta Sharma Saha, Christina Hong, Marguerite Li, Srikrishnan Rameshbabu, Raymond Chen, Alison Thomas, Akash Patnaik

Abstract

Non-T-cell-inflamed immunologically "cold" tumor microenvironments (TME) are associated with poor responsiveness to immune checkpoint blockade (ICB) and can be sculpted by tumor cell genomics. Here, we evaluated how retinoblastoma (Rb) tumor-suppressor loss-of-function (LOF), one of the most frequent alterations in human cancer and associated with lineage plasticity, poor prognosis, and therapeutic outcomes, alters the TME, and whether therapeutic strategies targeting the molecular consequences of Rb loss enhance ICB efficacy. We performed bioinformatics analysis to elucidate the impact of endogenous Rb LOF on the immune TME in human primary and metastatic tumors. Next, we used isogenic murine models of Rb-deficient prostate cancer for in vitro and in vivo mechanistic studies to examine how Rb loss and bromodomain and extraterminal (BET) domain inhibition (BETi) reprograms the immune landscape, and evaluated in vivo therapeutic efficacy of BETi, singly and in combination with ICB and androgen deprivation therapy. Rb loss was enriched in non-T-cell-inflamed tumors, and Rb-deficient murine tumors demonstrated decreased immune infiltration in vivo. The BETi JQ1 increased immune infiltration into the TME through enhanced tumor cell STING/NF-κB activation and type I IFN signaling within tumor cells, resulting in differential macrophage and T-cell-mediated tumor growth inhibition and sensitization of Rb-deficient prostate cancer to ICB. BETi can reprogram the immunologically cold Rb-deficient TME via STING/NF-κB/IFN signaling to sensitize Rb-deficient prostate cancer to ICB. These data provide the mechanistic rationale to test combinations of BETi and ICB in clinical trials of Rb-deficient prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。