Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms

靶向 5S 核糖体 RNA 的 Gapmer 反义寡核苷酸可通过两种机制减少成熟的 5S 核糖体 RNA

阅读:3
作者:Adam J Pollak, Justin H Hickman, Xue-Hai Liang, Stanley T Crooke

Abstract

In this study, we demonstrate that 5S ribosomal RNA (rRNA), a highly structured and protein-bound RNA, is quite difficult to reduce with antisense oligonucleotides (ASOs). However, we found a single accessible site that was targetable with a high-affinity complementary ASO. The ASO appeared to bind to the site, recruit RNaseH1, and cause degradation of the 5S RNA. Intriguingly, we also observed that the same ASO induced an accumulation of pre-5S RNA, which may contribute to reduced levels of mature 5S rRNA. As expected, ASO mediated reduction of 5S RNA, and modest inhibition of processing of pre-5S RNA resulted in nucleolar toxicity. However, the toxicity induced was minimal compared with actinomycin D, consistent with its modest effects on pre-5S rRNA. Mechanistically, we show that the accumulation of pre-5S rRNA required ASO hybridization to the cognate rRNA sequence but was independent of RNaseH1 activity. We found that Ro60 and La, proteins known to bind misprocessed RNAs, likely sequester the ASO-pre-5S rRNA species and block RNaseH1 activity, thus identifying another example of competitive mechanisms mediated by proteins that compete with RNaseH1 for binding to ASO-RNA heteroduplexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。