Topoisomerase IIβ mediates the resistance of glioblastoma stem cells to replication stress-inducing drugs

拓扑异构酶 IIβ 介导胶质母细胞瘤干细胞对复制应激诱导药物的抵抗力

阅读:7
作者:Saša Kenig, Valentina Faoro, Evgenia Bourkoula, Neža Podergajs, Tamara Ius, Marco Vindigni, Miran Skrap, Tamara Lah, Daniela Cesselli, Paola Storici, Alessandro Vindigni

Background

Glioblastoma stem cells (GSC) have been extensively recognized as a plausible cause of glioblastoma resistance to therapy and recurrence resulting in high glioblastoma mortality. Abnormalities in the DNA repair pathways might be responsible for the inability of the currently used chemotherapeutics to eliminate the (GSC) subpopulation.

Conclusion

We suggest that Top2β may represent a new target for gene therapy in glioblastoma. In addition, the other genes that we found to be up-regulated in GSC versus glioblastoma primary cells should be further investigated as glioblastoma theranostics.

Methods

In this work, we compared the expression of sixty DNA repair related genes between primary glioblastoma cell cultures and the glioblastoma enriched stem cell primary cultures. MTT test was used to analyze the effect of selected drugs and immunofluorescence to evaluate the load of DNA damage.

Results

We found several differentially expressed genes and we identified topoisomerase IIβ (Top2β) as the gene with highest up-regulation in GSC. Also among the tested cell lines the expression of Top2β was the highest in NCH421k cells, a well-characterized glioblastoma cell line with all the stemness characteristics. On the other hand, Top2β expression markedly decreased upon the induction of differentiation by all trans-retinoic acid. Depletion of Top2β increased the sensitivity of NCH421k cells to replication stress inducing drugs, such as cisplatin, methyl-methanesulfonate, hydrogen peroxide, and temozolomide. Consistently, we found an increased load of DNA damage and increased Chk1 activation upon Top2β depletion in NCH421k cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。