Phosphorus availability and planting patterns regulate soil microbial effects on plant performance in a semiarid steppe

磷的有效性和种植模式调节土壤微生物对半干旱草原植物性能的影响

阅读:2
作者:Yawen Li, Xiaoming Lu, Jishuai Su, Yongfei Bai

Aims

Growing evidence has suggested that plant responses to model soil microorganisms are context dependent; however, few studies have investigated the effects of whole soil microbial communities on plant performance in different abiotic and biotic conditions. To address this, we examined how soil phosphorus (P) availability and different planting patterns regulate soil microbial effects on the growth of two native plant species in a semiarid steppe.

Background and aims

Growing evidence has suggested that plant responses to model soil microorganisms are context dependent; however, few studies have investigated the effects of whole soil microbial communities on plant performance in different abiotic and biotic conditions. To address this, we examined how soil phosphorus (P) availability and different planting patterns regulate soil microbial effects on the growth of two native plant species in a semiarid steppe.

Conclusions

Our results underline that indigenous soil microbiota have negative effects on the growth of two dominant plant species from a semiarid steppe, but their effects are highly dependent on the soil P availability and planting patterns. They also indicate that defence genes might play a key role in controlling plant growth responses to the soil microbiota.

Methods

We carried out a glasshouse experiment to explore the effects of the whole indigenous soil microbiota on the growth and performance of Leymus chinensis and Cleistogenes squarrosa using soil sterilization with different soil P availabilities and planting patterns (monoculture and mixture). Transcriptome sequencing (RNA-seq) was used to explain the potential molecular mechanisms of the soil microbial effects on C. squarrosa. Key

Results

The soil sterilization treatment significantly increased the biomass of L. chinensis and C. squarrosa in both monoculture and mixture conditions, which indicated that the soil microbiota had negative growth effects on both plants. The addition of P neutralized the negative microbial effects for both L. chinensis and C. squarrosa, whereas the mixture treatment amplified the negative microbial effects on L. chinensis but alleviated them on C. squarrosa. Transcriptomic analysis from C. squarrosa roots underscored that the negative soil microbial effects were induced by the upregulation of defence genes. The P addition treatment resulted in significant decreases in the number of differentially expressed genes attributable to the soil microbiota, and some defence genes were downregulated. Conclusions: Our results underline that indigenous soil microbiota have negative effects on the growth of two dominant plant species from a semiarid steppe, but their effects are highly dependent on the soil P availability and planting patterns. They also indicate that defence genes might play a key role in controlling plant growth responses to the soil microbiota.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。