Background
Celecoxib is a selective cyclooxygenase (COX)-2 inhibitor that has been reported to reduce the risk of breast cancer. In our previous study, celecoxib induced apoptosis and caused cell cycle arrest at the G0/G1 phase in the breast cancer cell line MDA-MB-231, and its effects were mediated by downregulation of NF-κB signaling. The NF-κB p65/RelA subunit may play a role in cell death through the activation of anti-apoptotic target genes including the inhibitor of apoptosis (IAP) and Bcl-2 families, and inhibition of protein kinase B/Akt. The
Conclusions
p65 is a pivotal anti-apoptotic factor that can reverse celecoxib-induced growth inhibition in MDA-MB-231 cells.
Methods
The effects of p65 overexpression on celecoxib-inhibited NF-κB transcriptional activity were examined by western blotting, electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. Cell viability and cell death were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay, and the levels of cleaved poly(ADP-ribose) polymerase (PARP) and caspase. Anti-apoptotic NF-κB target genes and cell cycle regulators were examined by western blotting to screen for the expression of target genes under direct regulation by p65.
Results
Overexpression of p65 increased NF-κB transcriptional activity and interfered with celecoxib-mediated apoptosis as assessed by MTT assay and caspase-3, caspase-9, and PARP expressions. Exogenously overexpressed p65 upregulated NF-κB-responsive genes, including anti-apoptotic genes such as survivin and XIAP, and the cell cycle regulatory gene cyclin D1. However, p65 overexpression did not affect celecoxib-induced p-Akt inactivation, suggesting that celecoxib might have separate molecular mechanisms for regulating Akt signaling independently of its inhibition of NF-κB transcriptional activity. Conclusions: p65 is a pivotal anti-apoptotic factor that can reverse celecoxib-induced growth inhibition in MDA-MB-231 cells.
