Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells

肿瘤细胞碳水化合物代谢相关的内源性酸性代谢产物的评估

阅读:6
作者:Elizabeth A Mazzio, Bruce Smith, Karam F A Soliman

Abstract

Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O(2). While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1-10 mM) +/- mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP(+)) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pH(ex)) from neutral to 6.7 +/- 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 +/- 0.5 mM; +GLU 12.35 +/- 1.3 mM; +GLU + MPP 18.1 +/- 1.8 mM), acetate (Ctrl 0.84 +/- 0.13 mM: +GLU 1.3 +/- 0.15 mM; +GLU + MPP 2.7 +/- 0.4 mM), fumarate, and a-ketoglutarate (<10 microM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection-LC show accumulation of L: -alanine (1.6 +/- .052 mM), L: -glutamate (285 +/- 9.7 microM), L: -asparagine (202 +/- 2.1 microM), and L: -aspartate (84.2 +/- 4.9 microM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde, aldehydes, or ketones (Purpald/2,4-dinitrophenylhydrazine-Brady's reagent), acetoin (Voges-Proskauer test), or alcohols (NAD(+)-linked alcohol dehydrogenase). In conclusion, these results provide preliminary evidence to suggest the existence of an active pyruvate-alanine transaminase or phosphotransacetylase/acetyl-CoA synthetase pathway to be involved with anaerobic energy metabolism of cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。