Marrow stem cells shift gene expression and engraftment phenotype with cell cycle transit

骨髓干细胞通过细胞周期转变改变基因表达和植入表型

阅读:5
作者:Jean-Francois Lambert, Meng Liu, Gerald A Colvin, Mark Dooner, Christina I McAuliffe, Pamela S Becker, Bernard G Forget, Sherman M Weissman, Peter J Quesenberry

Abstract

We studied the genetic and engraftment phenotype of highly purified murine hematopoietic stem cells (lineage negative, rhodamine-low, Hoechst-low) through cytokine-stimulated cell cycle. Cells were cultured in interleukin (IL)-3, IL-6, IL-11, and steel factor for 0 to 48 h and tested for engraftment capacity in a lethally irradiated murine competitive transplant model. Engraftment showed major fluctuations with nadirs at 36 and 48 h of culture and recovery during the next G1. Gene expression of quiescent (0 h) or cycling (48 h) stem cells was compared with lineage positive cells by 3' end PCR differential display analysis. Individual PCR bands were quantified using a 0 to 9 scale and results were visually compared using color-coded matrices. We defined a set of 637 transcripts expressed in stem cells and not expressed in lineage positive cells. Gene expression analyzed at 0 and 48 h showed a major shift from "stem cell genes" being highly expressed at 0 h and turned off at 48 h, while "cell division" genes were turned on at 48 h. These observations suggest stem cell gene expression shifts through cell cycle in relation to cell cycle related alterations of stem cell phenotype. The engraftment defect is related to a major phenotypic change of the stem cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。