Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans

全基因组 DNA 甲基化分析确定了人类 ZFP57 印记调节器上游差异甲基化的叶酸敏感区域

阅读:5
作者:Manori Amarasekera, David Martino, Sarah Ashley, Hani Harb, Dörthe Kesper, Deborah Strickland, Richard Saffery, Susan L Prescott

Abstract

Folate intake during pregnancy may affect the regulation of DNA methylation during fetal development. The genomic regions in the offspring that may be sensitive to folate exposure during in utero development have not been characterized. Using genome-scale profiling, we investigated DNA methylation in 2 immune cell types (CD4(+) and antigen-presenting cells) isolated from neonatal cord blood, selected on the basis of in utero folate exposure. High-folate (HF; n=11) and low-folate (LF; n=12) groups were selected from opposite extremes of maternal serum folate levels measured in the last trimester of pregnancy. A comparison of these groups revealed differential methylation at 7 regions across the genome. By far, the biggest effect observed was hypomethylation of a 923 bp region 3 kb upstream of the ZFP57 transcript, a regulator of DNA methylation during development, observed in both cell types. Levels of H3/H4 acetylation at ZFP57 promoter and ZFP57 mRNA expression were higher in CD4(+) cells in the HF group relative to the LF group. Hypomethylation at this region was replicated in an independent sample set. These data suggest that exposure to folate has effects on the regulation of DNA methylation during fetal development, and this may be important for health and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。