Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize

解磷细菌的表型和基因型特征及其对玉米生长的影响

阅读:5
作者:Amit Pande, Prashant Pandey, Simmi Mehra, Mritunjay Singh, Suresh Kaushik

Abstract

Phosphate solubilizing bacteria (PSB) has ability to convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the agriculture field. In this study, isolation and identification of PSB were carried out in Indian agriculture field (Nainital region, Uttarakhand). A total of 8 phosphate solubilizing bacterial colonies were isolated on the Pikovskaya's (PKV) agar medium, containing insoluble tricalcium phosphate (TCP). The colonies showed clear halo zones around the bacterial growth were considered as phosphate solubilizers. Out of 8 bacterial isolates, 3 isolates showed high phosphate solubilization index (PSI) ranged from 4.88 ± 0.69 to 4.48 ± 0.30, lower pH ranging 3.08 ± 0.08 to 3.82 ± 0.12 and high phosphate solubilization varied from 305.49 ± 10 μg/ml to 277.72 ± 1.45 μg/ml, were selected for further characterization. Based on the 16 S rRNA gene sequence analysis A4 isolate and H6 isolate were closely related to Alcaligenes aquatilis (99%), and C1 isolate was closely related to Burkholderia cepacia (99%). In addition, pot examination also showed the greatest efficiency in promotion of maize growth compared to uninoculated plant. Isolated PSB were able to produce different organic acids (such as gluconic acids, formic acid, and citric acid) in the culture supernatant and may consider as the principle mechanism for phosphate solubilization. This study clearly indicates that A4, C1 and H6 isolates may use as a biofertilizers in ecological agricultural systems instead of synthetic chemicals and may help to sustain environmental health and soil productivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。