Circ-CAMTA1 regulated by Ca2+ influx inhibited pyruvate carboxylase activity and modulate T cell function in patients with systemic lupus erythematosus

受 Ca2+ 内流调控的 Circ-CAMTA1 抑制丙酮酸羧化酶活性并调节系统性红斑狼疮患者的 T 细胞功能

阅读:9
作者:Hui-Chun Yu, Hsien-Yu Huang Tseng, Hsien-Bin Huang, Ming-Chi Lu

Conclusion

Three Ca2+ influx-regulated circ-RNAs-circ-CAMTA1, circ-ASH1L, and circ-ASAP1 -were significantly reduced in T cells from patients with SLE and associated with disease activity. IFN-α suppressed the expression of circ-CAMTA1, which interacted with pyruvate carboxylase, inhibited its activity, affected glucose metabolism, and increased IL-2 secretion. These findings suggest that circ-CAMTA1 regulated by Ca²⁺ influx modulated T cell function in patients with SLE.

Methods

The expression profile of circRNAs in Jurkat cells, co-cultured with and without ionomycin, was analyzed by next-generation sequencing and validated using real-time polymerase chain reaction. The identified Ca2+ influx-regulated circRNAs were further examined in T cells from 42 patients with SLE and 23 healthy controls. The biological function of specific circRNA was investigated using transfection and RNA pull-down assay.

Results

After validation, we confirmed that the expression levels of circ-ERCC4, circ-NFATC2, circ-MYH10, circ-CAMTA1, circ-ASH1L, circ-SOCS7, and circ-ASAP1 were consistently increased in Jurkat cells following Ca2+ influx. The expression levels of circ-CAMTA1, circ-ASH1L, and circ-ASAP1 were significantly lower in T cells from patients with SLE, with even lower levels observed in those with higher disease activity. Interferon (IFN)-α was found to suppress the expression of circ-CAMTA1. Circ-CAMTA1 bound to pyruvate carboxylase and inhibited its biological activity. Overexpression of circ-CAMTA1, but not its linear form, significantly decreased extracellular glucose levels. Furthermore, increased expression of circ-CAMTA1, but not its linear form, decreased miR-181c-5p expression, resulting increased IL-2 secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。