Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM

大部分人类自身反应性幼稚 B 细胞都表现出无能反应,这些细胞表面 IgM 水平较低

阅读:6
作者:Tâm D Quách, Nataly Manjarrez-Orduño, Diana G Adlowitz, Lin Silver, Hongmei Yang, Chungwen Wei, Eric C B Milner, Iñaki Sanz

Abstract

B cell anergy represents an important mechanism of peripheral immunological tolerance for mature autoreactive B cells that escape central tolerance enforced by receptor editing and clonal deletion. Although well documented in mice, the extent of its participation in human B cell tolerance remains to be fully established. In this study, we characterize the functional behavior of strictly defined human naive B cells separated on the basis of their surface IgM (sIgM) expression levels. We demonstrate that cells with lower sIgM levels (IgM(lo)) are impaired in their ability to flux calcium in response to either anti-IgM or anti-IgD cross-linking and contain a significantly increased frequency of autoreactive cells compared with naive B cells with higher levels of sIgM. Phenotypically, in healthy subjects, IgM(lo) cells are characterized by the absence of activation markers, reduction of costimulatory molecules (CD19 and CD21), and increased levels of inhibitory CD22. Functionally, IgM(lo) cells display significantly weaker proliferation, impaired differentiation, and poor Ab production. In aggregate, the data indicate that hyporesponsiveness to BCR cross-linking associated with sIgM downregulation is present in a much larger fraction of all human naive B cells than previously reported and is likely to reflect a state of anergy induced by chronic autoantigen stimulation. Finally, our results indicate that in systemic lupus erythematosus patients, naive IgM(lo) cells display increased levels of CD95 and decreased levels of CD22, a phenotype consistent with enhanced activation of autoreactive naive B cells in this autoimmune disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。