Evaluating the therapeutic potential of a non-natural nucleotide that inhibits human ribonucleotide reductase

评估抑制人类核苷酸还原酶的非天然核苷酸的治疗潜力

阅读:11
作者:Md Faiz Ahmad, Qun Wan, Shalini Jha, Edward Motea, Anthony Berdis, Chris Dealwis

Abstract

Human ribonucleotide reductase (hRR) is the key enzyme involved in de novo dNTP synthesis and thus represents an important therapeutic target against hyperproliferative diseases, most notably cancer. The purpose of this study was to evaluate the ability of non-natural indolyl-2'-deoxynucleoside triphosphates to inhibit the activity of hRR. The structural similarities of these analogues with dATP predicted that they would inhibit hRR activity by binding to its allosteric sites. In silico analysis and in vitro characterization identified one particular analogue designated as 5-nitro-indolyl-2'-deoxyribose triphosphate (5-NITP) that inhibits hRR. 5-NITP binding to hRR was determined by isothermal titration calorimetry. X-ray crystal structure of 5-NITP bound to RR1 was determined. Cell-based studies showed the anti-cancer effects of the corresponding non-natural nucleoside against leukemia cells. 5-NITP binds to hRR with micromolar affinity. Binding does not induce hexamerization of hRR1 like dATP, the native allosteric inhibitor of hRR that binds with high affinity to the A-site. The X-ray crystal structure of Saccharomyces cerevisiae RR1-5-NITP (ScRR1-5-NITP) complex determined to 2.3 Å resolution shows that 5-NITP does not bind to the A-site but rather at the S-site. Regardless, 5-nitro-indolyl-2'-deoxynucleoside (5-NIdR) produces cytostatic and cytotoxic effects against human leukemia cells by altering cell-cycle progression. Our studies provide useful insights toward developing new inhibitors with improved potency and efficacy against hRR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。