Inflammation-associated repression of vasodilator-stimulated phosphoprotein (VASP) reduces alveolar-capillary barrier function during acute lung injury

炎症相关的血管扩张刺激磷蛋白 (VASP) 抑制会降低急性肺损伤期间的肺泡毛细血管屏障功能

阅读:7
作者:Janek Henes, Marthe A Schmit, Julio C Morote-Garcia, Valbona Mirakaj, David Köhler, Louise Glover, Therese Eldh, Ulrich Walter, Jörn Karhausen, Sean P Colgan, Peter Rosenberger

Abstract

Acute lung injury (ALI) is an inflammatory disorder associated with reduced alveolar-capillary barrier function, increased pulmonary vascular permeability, and infiltration of leukocytes into the alveolar space. Pulmonary function might be compromised, its most severe form being the acute respiratory distress syndrome. A protein central to physiological barrier properties is vasodilator-stimulated phosphoprotein (VASP). Given the fact that VASP expression is reduced during periods of cellular hypoxia, we investigated the role of VASP during ALI. Initial studies revealed reduced VASP expressional levels through cytokines in vitro. Studies in the putative human VASP promoter identified NF-kappaB as a key regulator of VASP transcription. This VASP repression results in increased paracellular permeability and migration of neutrophils in vitro. In a model of LPS-induced ALI, VASP(-/-) mice demonstrated increased pulmonary damage compared with wild-type animals. These findings were confirmed in a second model of ventilator-induced lung injury. Studies employing bone marrow chimeric animals identified tissue-specific repression of VASP as the underlying cause of decreased barrier properties of the alveolar-capillary barrier during ALI. Taken together these studies identify tissue-specific VASP as a central protein in the control of the alveolar-capillary barrier properties during ALI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。