Upregulation of IL-37 in epithelial cells: A potential new mechanism of T cell inhibition induced by tacrolimus

上皮细胞中 IL-37 的上调:他克莫司诱导 T 细胞抑制的潜在新机制

阅读:5
作者:Zhangci Su, Jingyi Lu, Zihang Ling, Wei Li, Xi Yang, Bin Cheng, Xiaoan Tao

Abstract

Oral lichen planus (OLP) is a chronic T cell-mediated mucocutaneous disease characterized by T cell infiltration at the connective tissue-epithelium interface. Traditionally, topical corticosteroids are used as the first-line drugs to treat OLP. However, long-term use of corticosteroids may lead to drug tolerance, secondary candidiasis, and autoimmune adrenal insufficiency. Although topical tacrolimus has often been recommended for short-term use in corticosteroid-refractory OLP, the precise role of tacrolimus in epithelial cells remains elusive. This study showed that tacrolimus could directly upregulate the expression of IL-37 in human gingival epithelial cells by promoting the TGF-βRI/Smad3 pathway independently of calcineurin inhibition and MAPKs. In contrast, dexamethasone, one of the corticosteroids, did not have the same effect. Moreover, IL-37 could inhibit the proliferation of activated T cells and the secretion of effector cytokines and alleviate epithelial cell apoptosis and death caused by activated T cells ina co-culturesystem. Furthermore, compared with healthy controls, IL-37 and p-Smad3 levels significantly increased in the oral mucosa affected by OLP, especially in the epithelium. IL-37 might have mediated a negative feedback mechanism to curb excessive inflammation in OLP. However, the expression of IL-37 was not associated with the infiltration of CD8+ T cells and Tregs in OLP, implying that IL-37 might mostly affect T cell activation rather than T cell differentiation and migration. Overall, this study discovered a potential novel mechanism by which tacrolimus might indirectly inhibit T cell-mediated immune damage by upregulating IL-37 in human gingival epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。