Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii

SHM2 基因(编码两种丝氨酸羟甲基转移酶同工酶之一)的破坏,会降低棉蚜虫体内甘氨酸到丝氨酸的通量

阅读:11
作者:Christina Schlüpen, Maria A Santos, Ulrike Weber, Albert de Graaf, José L Revuelta, K-Peter Stahmann

Abstract

Riboflavin overproduction in the ascomycete Ashbya gossypii is limited by glycine, a precursor of purine biosynthesis, and therefore an indicator of glycine metabolism. Disruption of the SHM 2 gene, encoding a serine hydroxymethyltransferase, resulted in a significant increase in riboflavin productivity. Determination of the enzyme's specific activity revealed a reduction from 3 m-units/mg of protein to 0.5 m-unit/mg protein. The remaining activity was due to an isoenzyme encoded by SHM 1, which is probably mitochondrial. A hypothesis proposed to account for the enhanced riboflavin overproduction of SHM 2-disrupted mutants was that the flux from glycine to serine was reduced, thus leading to an elevated supply with the riboflavin precursor glycine. Evidence for the correctness of that hypothesis was obtained from (13)C-labelling experiments. When 500 microM 99% [1-(13)C]threonine was fed, more than 50% of the label was detected in C-1 of glycine resulting from threonine aldolase activity. More than 30% labelling determined in C-1 of serine can be explained by serine synthesis via serine hydroxymethyltransferase. Knockout of SHM 1 had no detectable effect on serine labelling, but disruption of SHM 2 led to a decrease in serine (2-5%) and an increase in glycine (59-67%) labelling, indicating a changed carbon flux.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。