Antitumor effects of plasma‑activated solution on a murine melanoma model in vivo and in vitro

等离子体活化溶液对小鼠黑色素瘤模型的体内和体外抗肿瘤作用

阅读:9
作者:Xingyu Yang, Cheng Chen, Shiyun Zhou, Miaomiao Ren, Chenchen Zhang, Cheng Cheng, Chunjun Yang

Abstract

Melanoma is a common malignant skin tumor with highly invasive features and a high metastasis rate that can be difficult to treat clinically. Large-scale resection of primary cutaneous melanoma is often used to avoid postoperative recurrence. For advanced patients, radiotherapy, targeted therapy and immunotherapy are often needed. Low-temperature plasma has been proved to have significant antitumor effects on a variety of cancer cell lines cultured in vitro. The main limitation of direct low-temperature plasma treatment is that it has weak penetration ability and can only treat superficial lesions. In recent years, research on low-temperature plasma-activated solution has revealed that it also have good antitumor effects and low-temperature plasma penetration depth problems can be solved by local injection. The present study revealed that low-temperature plasma-activated phosphate buffer solution exhibited good antitumor effects and biosafety against melanoma in vitro and in vivo. It demonstrated that low-temperature plasma-activated solution has antitumor effects due to its regulation of intracellular redox, destruction of mitochondrial function and DNA damage. In vivo experiments demonstrated that treatment with low-temperature plasma-activated solution not only exhibited antitumor effects but also caused no significant damage to hematopoietic function or liver and kidney functions in mice. All these results demonstrated that low-temperature plasma-activated solution represent a promising antitumor treatment strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。