Role of nano-lipid formulation of CARP-1 mimetic, CFM-4.17 to improve systemic exposure and response in osimertinib resistant non-small cell lung cancer

CARP-1 类似物 CFM-4.17 的纳米脂质制剂在改善奥希替尼耐药非小细胞肺癌的全身暴露和反应中的作用

阅读:14
作者:Nagavendra Kommineni, Ebony Nottingham, Arvind Bagde, Nilkumar Patel, Arun K Rishi, Satyanarayan R S Dev, Mandip Singh

Background

EGFR mutated NSCLCs have been shown to employ the use of CARP-1 in overriding the signaling inhibition of tyrosine kinase inhibitors (such as Osimertinib). CFM 4.17 is a CARP-1 inhibitor which has a promising role in overcoming Tyrosine Kinase Inhibitor (TKI) resistance when used as a pre-treatment through promoting apoptosis. Lack of solubility, hydrophobicity leading to poor systemic exposure are the limitations of CFM 4.17. This can be overcome by nano lipid-based formulation (NLPF) of CFM 4.17 which can enhance systemic exposure in preclinical animal models as well as improve therapeutic efficacy in drug-resistant cancer cell lines.

Conclusion

We have successfully formulated CFM 4.17 NLPFs by robust RSM design approach displaying improved response through sensitizing cells to Osimertinib treatment as well as improving the oral bioavailability of CFM 4.17.

Methods

Molecular docking simulation studies were performed for CFM 4.17. CFM 4.17-NLPF was formulated by melt dispersion technique and optimized using a Box-Behnken designed surface response methodology approach using Design Expert and MATLAB. In vitro, CFM 4.17 release studies were performed in simulated gastric fluids (SGF-pH-1.2) and simulated intestinal fluids (SIF- pH-6.8). Cell viability assays were performed with HCC827 and H1975 Osimertinib resistant and non-resistant cells in 2D and 3D culture models of Non-small cell lung cancer to determine the effects of CFM 4.17 pre-treatment in Osimertinib response. In vivo pharmacokinetics in rats were performed measuring the effects of NLPF on CFM 4.17 to improve the systemic exposure.

Results

CFM 4.17 was well accommodated in the active pocket of the active site of human EGFR tyrosine kinase. CFM 4.17 NLPF was optimized with robust experimental design with particle size less than 300 nm and % entrapment efficiency of 92.3 ± 1.23. Sustained diffusion-based release of CFM 4.17 was observed from NLPF in SGF and SIFs with Peppas and Higuchi based release kinetics, respectively. CFM 4.17 pretreatment improved response by decreasing IC50 value by 2-fold when compared to single treatment Osimertinib in both 2D monolayer and 3D spheroid assays in HCC827 and H1975 Osimertinib resistant and non-resistant cells of Non-small cell lung cancer. There were no differences between CFM 4.17 NLPF and suspension in 2D monolayer culture pretreatments; however, The 3D culture assays showed that CFM 4.17 NLPF improved combination sensitivity. Pharmacokinetic analysis showed that CFM 4.17 NLPF displayed higher AUCtot (2.9-fold) and Cmax (1.18-fold) as compared to free CFM 4.17. In contrast, the animal groups administered CFM 4.17 NLPF showed a 4.73-fold (in half-life) and a 3.07-fold increase (in MRT) when compared to equivalent dosed suspension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。