Formation of a WIP-, WASp-, actin-, and myosin IIA-containing multiprotein complex in activated NK cells and its alteration by KIR inhibitory signaling

活化 NK 细胞中含有 WIP、WASp、肌动蛋白和肌球蛋白 IIA 的多蛋白复合物的形成及其通过 KIR 抑制信号传导的改变

阅读:8
作者:Konrad Krzewski, Xi Chen, Jordan S Orange, Jack L Strominger

Abstract

The tumor natural killer (NK) cell line YTS was used to examine the cytoskeletal rearrangements required for cytolysis. A multiprotein complex weighing approximately 1.3 mD and consisting of WASp-interacting protein (WIP), Wiskott-Aldrich syndrome protein (WASp), actin, and myosin IIA that formed during NK cell activation was identified. After induction of an inhibitory signal, the recruitment of actin and myosin IIA to a constitutive WIP-WASp complex was greatly decreased. Both actin and myosin IIA were recruited to WIP in the absence of WASp. This recruitment correlated with increased WIP phosphorylation, which was mediated by PKCtheta. Furthermore, the disruption of WIP expression by WIP RNA interference prevented the formation of this protein complex and led to almost complete inhibition of cytotoxic activity. Thus, the multiprotein complex is important for NK cell function, killer cell immunoglobulin-like receptor inhibitory signaling affects proteins involved in cytoskeletal rearrangements, and WIP plays a central role in the formation of the complex and in the regulation of NK cell activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。