Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutation

抑制细胞外信号调节激酶 1/2 信号传导对由层蛋白 A/C 基因突变引起的 Emery-Dreifuss 肌营养不良症小鼠模型中的骨骼肌具有有益影响

阅读:6
作者:Antoine Muchir, Young Jin Kim, Sarah A Reilly, Wei Wu, Jason C Choi, Howard J Worman

Background

Autosomal Emery-Dreifuss muscular dystrophy is caused by mutations in the lamin A/C gene (LMNA) encoding A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. Classically, the disease manifests as scapulo-humeroperoneal muscle wasting and weakness, early joint contractures and dilated cardiomyopathy with conduction block; however, move variable skeletal muscle involvement can be present. Previously, we demonstrated increased activity of extracellular signal-regulated kinase (ERK) 1/2 in hearts of LmnaH222P/H222P mice, a model of autosomal Emery-Dreifuss muscular dystrophy, and that blocking its activation improved cardiac function. We therefore examined the role of ERK1/2 activity in skeletal muscle pathology.

Conclusions

Our results show that ERK1/2 plays a role in the development of skeletal muscle pathology in LmnaH222/H222P mice. They further provide the first evidence that a small molecule drug may be beneficial for skeletal muscle in autosomal Emery-Dreifuss muscular dystrophy.

Methods

Sections of skeletal muscle from LmnaH222P/H222P mice were stained with hematoxylin and eosin and histological analysis performed using light microscopy. ERK1/2 activity was assessed in mouse tissue and cultured cells by immunoblotting and real-time polymerase chain reaction to measure expression of downstream target genes. LmnaH222P/H222P mice were treated with selumetinib, which blocks mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 that activates ERK1/2, from 16 to 20 weeks of age to assess the effects of treatment on muscle histology, ERK1/2 activity and limb grip strength.

Results

We detected enhanced activation of ERK1/2 in skeletal muscle of LmnaH222P/H222P mice. Treatment with selumetinib ameliorated skeletal muscle histopathology and reduced serum creatine phosphokinase and aspartate aminotransferase activities. Selumetinib treatment also improved muscle function as assessed by in vivo grip strength testing. Conclusions: Our results show that ERK1/2 plays a role in the development of skeletal muscle pathology in LmnaH222/H222P mice. They further provide the first evidence that a small molecule drug may be beneficial for skeletal muscle in autosomal Emery-Dreifuss muscular dystrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。