Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson's disease

巨噬细胞抗原复合物-1 介导帕金森病 MPTP 模型中的反应性微胶质增生和进行性多巴胺能神经变性

阅读:10
作者:Xiaoming Hu, Dan Zhang, Hao Pang, W Michael Caudle, Yachen Li, Huiming Gao, Yuxin Liu, Li Qian, Belinda Wilson, Donato A Di Monte, Syed F Ali, Jing Zhang, Michelle L Block, Jau-Shyong Hong

Abstract

Neuronal death is known to trigger reactive microgliosis. However, little is known regarding the manner by which microglia are activated by injured neurons and how microgliosis participates in neurodegeneration. In this study we delineate the critical role of macrophage Ag complex-1 (MAC1), a member of the beta(2) integrin family, in mediating reactive microgliosis and promoting dopaminergic (DAergic) neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. MAC1 deficiency greatly attenuated the DAergic neurodegeneration induced by MPTP or 1-methyl-4-phenyl-pyridium iodide (MPP(+)) exposure both in vivo and in vitro, respectively. Reconstituted experiments created by adding microglia from MAC1(-/-) or MAC1(+/+) mice back to MAC1(+/+) neuron-enriched cultures showed that microglia with functional MAC1 expression was mandatory for microglia-enhanced neurotoxicity. Both in vivo and in vitro morphological and Western blot studies demonstrated that MPTP/MPP(+) produced less microglia activation in MAC1(-/-) mice than MAC1(+/+) mice. Further mechanistic studies revealed that a MPP(+)-mediated increase in superoxide production was reduced in MAC1(-/-) neuron-glia cultures compared with MAC1(+/+) cultures. The stunted production of superoxide in MAC1(-/-) microglia is likely linked to the lack of translocation of the cytosolic NADPH oxidase (PHOX) subunit (p47(phox)) to the membrane. In addition, the production of PGE(2) markedly decreased in neuron plus MAC1(-/-) microglia cocultures vs neuron plus MAC1(+/+) microglia cocultures. Taken together, these results demonstrate that MAC1 plays a critical role in MPTP/MPP(+)-induced reactive microgliosis and further support the hypothesis that reactive microgliosis is an essential step in the self-perpetuating cycle leading to progressive DAergic neurodegeneration observed in Parkinson's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。