Silencing of EPHB2 promotes the epithelial-mesenchymal transition of skin squamous cell carcinoma-derived A431 cells

EPHB2 沉默促进皮肤鳞状细胞癌衍生 A431 细胞的上皮-间质转化

阅读:7
作者:Yoshinori Inagaki, Tomohiko Tokunaga, Mitsuru Yanai, Dan Wu, Jiyi Huang, Hiroki Nagase, Noboru Fukuda, Toshinori Ozaki, Masayoshi Soma, Kyoko Fujiwara

Abstract

Erythropoietin-producing hepatocellular (Eph) receptors and their ligand ephrins serve crucial roles in the interactions among epithelial cells. Eph receptor/ephrin signaling regulates cell functions, including proliferation, differentiation and migration, via these cell-cell interactions. We reported previously that EPHB2, a member of the Eph receptor family, was highly expressed in chemically induced cutaneous squamous cell carcinoma (cSCC) tissues in mice. Although the higher expression level of EPHB2 has been observed in various human cancers, its roles in the development and progression of cancers are still unclear. In the present study, the functional implications of EPHB2 in the acquisition of malignant phenotypes of cSCC cells was investigated. Silencing of EPHB2 in the human cSCC cell line A431 induced epithelial-mesenchymal transition (EMT)-like morphological changes accompanied by a significant upregulation of epithelial-mesenchymal transition-associated genes such as zinc finger E-box binding homeobox 1/2. In addition, silencing of EPHB2 suppressed anchorage-independent cell growth under 3D culture conditions. Consistent with these observations, EPHB2 exhibited higher levels of expression in tumor spheres formed under 3D culture conditions than in cells cultured in adherent form, and the expression pattern of EMT markers indicated that EMT was suppressed in tumor spheres. The results of the present study indicated that EPHB2 serves a pivotal role in promoting the anchorage-independent growth of A431 cells through the suppression of EMT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。