Temporal Regulation of the Bacterial Metabolite Deoxycholate during Colonic Repair Is Critical for Crypt Regeneration

结肠修复过程中细菌代谢物脱氧胆酸的时间调节对结肠隐窝再生至关重要

阅读:6
作者:Umang Jain, Chin-Wen Lai, Shanshan Xiong, Victoria M Goodwin, Qiuhe Lu, Brian D Muegge, George P Christophi, Kelli L VanDussen, Bethany P Cummings, Erick Young, John Hambor, Thaddeus S Stappenbeck

Abstract

Colonic wound repair is an orchestrated process, beginning with barrier re-establishment and followed by wound channel formation and crypt regeneration. Elevated levels of prostaglandin E2 (PGE2) promote barrier re-establishment; however, we found that persistently elevated PGE2 hinders subsequent repair phases. The bacterial metabolite deoxycholate (DCA) promotes transition through repair phases via PGE2 regulation. During barrier re-establishment, DCA levels are locally diminished in the wound, allowing enhanced PGE2 production and barrier re-establishment. However, during transition to the wound channel formation phase, DCA levels increase to inhibit PGE2 production and promote crypt regeneration. Altering DCA levels via antibiotic treatment enhances PGE2 levels but impairs wound repair, which is rescued with DCA treatment. DCA acts via its receptor, farnesoid X receptor, to inhibit the enzyme cPLA2 required for PGE2 synthesis. Thus, colonic wound repair requires temporally regulated signals from microbial metabolites to coordinate host-associated signaling cascades. VIDEO ABSTRACT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。