Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications

碘化铅钙钛矿薄膜中光增强离子传输的量化及其太阳能电池应用

阅读:8
作者:Yi-Cheng Zhao, Wen-Ke Zhou, Xu Zhou, Kai-Hui Liu, Da-Peng Yu, Qing Zhao

Abstract

Ionic transport in organometal halide perovskites is of vital importance because it dominates anomalous phenomena in perovskite solar cells, from hysteresis to switchable photovoltaic effects. However, excited state ionic transport under illumination has remained elusive, although it is essential for understanding the unusual light-induced effects (light-induced self-poling, photo-induced halide segregation and slow photoconductivity response) in organometal halide perovskites for optoelectronic applications. Here, we quantitatively demonstrate light-enhanced ionic transport in CH3NH3PbI3 over a wide temperature range of 17-295 K, which reveals a reduction in ionic transport activation energy by approximately a factor of five (from 0.82 to 0.15 eV) under illumination. The pure ionic conductance is obtained by separating it from the electronic contribution in cryogenic galvanostatic and voltage-current measurements. On the basis of these findings, we design a novel light-assisted method of catalyzing ionic interdiffusion between CH3NH3I and PbI2 stacking layers in sequential deposition perovskite synthesis. X-ray diffraction patterns indicate a significant reduction of PbI2 residue in the optimized CH3NH3PbI3 thin film produced via light-assisted sequential deposition, and the resulting solar cell efficiency is increased by over 100% (7.5%-15.7%) with little PbI2 residue. This new method enables fine control of the reaction depth in perovskite synthesis and, in turn, supports light-enhanced ionic transport.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。