Calmodulin kinase II initiates arrhythmogenicity during metabolic acidification in murine hearts

钙调蛋白激酶 II 在小鼠心脏代谢酸化过程中引发心律失常

阅读:5
作者:T H Pedersen, I S Gurung, A Grace, C L-H Huang

Aim

The multifunctional signal molecule calmodulin kinase II (CaMKII) has been associated with cardiac arrhythmogenesis under conditions where its activity is chronically elevated. Recent studies report that its activity is also acutely elevated during acidosis. We test a hypothesis implicating CaMKII in the arrhythmogenesis accompanying metabolic acidification.

Conclusion

These findings together implicate CaMKII-dependent SR Ca(2+) waves in spontaneous arrhythmic events during metabolic acidification.

Methods

We obtained monophasic action potential recordings from Langendorff-perfused whole heart preparations and single cell action potentials (AP) using whole-cell patch-clamped ventricular myocytes. Spontaneous sarcoplasmic reticular (SR) Ca(2+)release events during metabolic acidification were investigated using confocal microscope imaging of Fluo-4-loaded ventricular myocytes.

Results

In Langendorff-perfused murine hearts, introduction of lactic acid into the Krebs-Henseleit perfusate resulted in abnormal electrical activity and ventricular tachycardia. The CaMKII inhibitor, KN-93 (2 microm), reversibly suppressed this spontaneous arrhythmogenesis during intrinsic rhythm and regular 8 Hz pacing. However, it failed to suppress arrhythmia evoked by programmed electrical stimulation. These findings paralleled a CaMKII-independent reduction in the transmural repolarization gradients during acidosis, which previously has been associated with the re-entrant substrate under other conditions. Similar acidification produced spontaneous AP firing and membrane potential oscillations in patch-clamped isolated ventricular myocytes when pipette solutions permitted cytosolic Ca(2+) to increase following acidification. However, these were abolished by both KN-93 and use of pipette solutions that held cytosolic Ca(2+) constant during acidosis. Acidosis also induced spontaneous Ca(2+) waves in isolated intact Fluo-4-loaded myocytes studied using confocal microscopy that were abolished by KN-93.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。