Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension

损伤引起的细胞外囊泡脱落会耗竭内皮细胞中的 Cav-1(Caveolin-1),并导致 TGF-β(转化生长因子-β)依赖性肺动脉高压

阅读:10
作者:Suellen D S Oliveira, Jiwang Chen, Maricela Castellon, Mao Mao, J Usha Raj, Suzy Comhair, Serpil Erzurum, Claudia L M Silva, Roberto F Machado, Marcelo G Bonini, Richard D Minshall

Abstract

Objective- To determine whether pulmonary arterial hypertension is associated with endothelial cell (EC)-Cav-1 (caveolin-1) depletion, EC-derived extracellular vesicle cross talk with macrophages, and proliferation of Cav-1 depleted ECs via TGF-β (transforming growth factor-β) signaling. Approach and Results- Pulmonary vascular disease was induced in Sprague-Dawley rats by exposure to a single injection of VEGFRII (vascular endothelial growth factor receptor II) antagonist SU5416 (Su) followed by hypoxia (Hx) plus normoxia (4 weeks each-HxSu model) and in WT (wild type; Tie2.Cre-; Cav1 lox/lox) and EC- Cav1-/- (Tie2.Cre+; Cav1 fl/fl) mice (Hx: 4 weeks). We observed reduced lung Cav-1 expression in the HxSu rat model in association with increased Cav-1+ extracellular vesicle shedding into the circulation. Whereas WT mice exposed to hypoxia exhibited increased right ventricular systolic pressure and pulmonary microvascular thickening compared with the group maintained in normoxia, the remodeling was further increased in EC- Cav1-/- mice indicating EC Cav-1 expression protects against hypoxia-induced pulmonary hypertension. Depletion of EC Cav-1 was associated with reduced BMPRII (bone morphogenetic protein receptor II) expression, increased macrophage-dependent TGF-β production, and activation of pSMAD2/3 signaling in the lung. In vitro, in the absence of Cav-1, eNOS (endothelial NO synthase) dysfunction was implicated in the mechanism of EC phenotype switching. Finally, reduced expression of EC Cav-1 in lung histological sections from human pulmonary arterial hypertension donors was associated with increased plasma concentration of Cav-1, extracellular vesicles, and TGF-β, indicating Cav-1 may be a plasma biomarker of vascular injury and key determinant of TGF-β-induced pulmonary vascular remodeling. Conclusions- EC Cav-1 depletion occurs, in part, via Cav-1+ extracellular vesicle shedding into the circulation, which contributes to increased TGF-β signaling, EC proliferation, vascular remodeling, and pulmonary arterial hypertension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。