Nitrated alpha-synuclein and microglial neuroregulatory activities

硝化 α-突触核蛋白和小胶质细胞神经调节活性

阅读:5
作者:Ashley D Reynolds, Irena Kadiu, Sanjay K Garg, Jason G Glanzer, Tara Nordgren, Pawel Ciborowski, Ruma Banerjee, Howard E Gendelman

Abstract

Microglial neuroinflammatory responses affect the onset and progression of Parkinson's disease (PD). We posit that such neuroinflammatory responses are, in part, mediated by microglial interactions with nitrated and aggregated alpha-synuclein (alpha-syn) released from Lewy bodies as a consequence of dopaminergic neuronal degeneration. As disease progresses, secretions from alpha-syn-activated microglia can engage neighboring glial cells in a cycle of autocrine and paracrine amplification of neurotoxic immune products. Such pathogenic processes affect the balance between a microglial neurotrophic and neurotoxic signature. We now report that microglia secrete both neurotoxic and neuroprotective factors after exposure to nitrated alpha-syn (N-alpha-syn). Proteomic (surface enhanced laser desorption-time of flight, 1D sodium dodecyl sulfate electrophoresis, and liquid chromatography-tandem mass spectrometry) and limited metabolomic profiling demonstrated that N-alpha-syn-activated microglia secrete inflammatory, regulatory, redox-active, enzymatic, and cytoskeletal proteins. Increased extracellular glutamate and cysteine and diminished intracellular glutathione and secreted exosomal proteins were also demonstrated. Increased redox-active proteins suggest regulatory microglial responses to N-alpha-syn. These were linked to discontinuous cystatin expression, cathepsin activity, and nuclear factor-kappa B activation. Inhibition of cathepsin B attenuated, in part, N-alpha-syn microglial neurotoxicity. These data support multifaceted microglia functions in PD-associated neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。