Aurintricarboxylic acid ameliorates experimental autoimmune encephalomyelitis by blocking chemokine-mediated pathogenic cell migration and infiltration

金精三羧酸通过阻断趋化因子介导的致病细胞迁移和浸润改善实验性自身免疫性脑脊髓炎

阅读:12
作者:Feifei Zhang, Wei Wei, Hui Chai, Xin Xie

Abstract

Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune diseases characterized by the immune-mediated demyelination and neurodegeneration of the CNS. Overactivation of CD4(+) T cells, especially the Th1 and Th17 subpopulations, is thought to be the direct cause of this disease. Aurintricarboxylic acid (ATA), an inhibitor of protein-nucleic acid interaction, has been reported to block with the JAK/STAT signaling pathway that is critical for Th cell differentiation. In this study, we discovered that ATA treatment significantly reduces the clinical score of EAE, but it does not directly inhibit the differentiation of Th1 and Th17 cells in vitro. ATA was found to block the chemotaxis and accumulation of dendritic cells in the spleen of EAE mice before the onset of the disease and to reduce the percentage of Th1 and Th17 cells in the spleen. Further study revealed that ATA also blocks the infiltration of pathogenic T cells into the CNS and blocks the onset of passive EAE. ATA was found to inhibit the functions of many chemokine receptors. By blocking chemokine-mediated migration of dendritic cells and pathogenic T cells, ATA alleviates the pathogenesis of EAE and might be used to treat autoimmune diseases, including multiple sclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。