The HIV-protease inhibitor saquinavir reduces proliferation, invasion and clonogenicity in cervical cancer cell lines

HIV 蛋白酶抑制剂沙奎那韦可降低宫颈癌细胞系的增殖、侵袭和克隆形成能力

阅读:8
作者:Elisabetta Bandiera, Paola Todeschini, Chiara Romani, Laura Zanotti, Eugenio Erba, Benedetta Colmegna, Eliana Bignotti, Alessandro Davide Santin, Enrico Sartori, Franco Edoardo Odicino, Sergio Pecorelli, Renata Alessandra Tassi, Antonella Ravaggi

Abstract

Innovative therapies in cervical cancer (CC) remain a priority. Recent data indicate that human immunodeficiency virus (HIV)-protease inhibitors used in highly active antiretroviral therapy can exert direct antitumor activities also in HIV-free preclinical and clinical models. The aim of the present study was to evaluate the antineoplastic effects of various HIV-protease inhibitors (indinavir, ritonavir and saquinavir) on primary and established CC cell lines. Two CC cell lines established in our laboratory and four commercially available CC cell lines were treated with indinavir, ritonavir and saquinavir at different concentrations and for different times. Proliferation, clonogenicity and radiosensitivity were evaluated by crystal violet staining. Proteasomal activities were assessed using a cell-based assay and immunoblotting. Cell cycle was analyzed by propidium iodide staining and flow cytometric analysis. Invasion was tested with Matrigel chambers. A t-test for paired samples was used for statistical analysis. In all cell lines, saquinavir was more effective than ritonavir in reducing cell proliferation and inhibiting proteasomal activities (P≤0.05). Conversely, indinavir exerted a negligible effect. The saquinavir concentrations required to modulate the proteasome activities were higher than those observed to be effective in inhibiting cell proliferation. In HeLa cells, saquinavir was strongly effective in inhibiting cell invasion and clonogenicity (P≤0.05) at concentrations much lower than those required to perturb proteasomal activities. Saquinavir did not contribute to increase the sensitivity of HeLa cells to X-rays. In conclusion, the present results demonstrate that saquinavir is able to significantly reduce cell proliferation, cell invasion and clonogenicity in a proteasome-independent manner in in vitro models of CC, and suggest that saquinavir could be a promising CC therapeutic agent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。