Mof acetyltransferase inhibition ameliorates glucose intolerance and islet dysfunction of type 2 diabetes via targeting pancreatic α-cells

Mof 乙酰转移酶抑制剂通过靶向胰腺 α 细胞改善 2 型糖尿病的葡萄糖不耐受和胰岛功能障碍

阅读:5
作者:Xinghong Guo, Chen Cui, Jia Song, Qin He, Nan Zang, Huiqing Hu, Xiaojie Wang, Danyang Li, Chuan Wang, Xinguo Hou, Xiangzhi Li, Kai Liang, Fei Yan, Li Chen

Background

Previously, we reported that Mof was highly expressed in α-cells, and its knockdown led to ameliorated fasting blood glucose (FBG) and glucose tolerance in non-diabetic mice, attributed by reduced total α-cell but enhanced prohormone convertase (PC)1/3-positive α-cell mass. However, how Mof and histone 4 lysine 16 acetylation (H4K16ac) control α-cell and whether Mof inhibition improves glucose handling in type 2 diabetes (T2DM) mice remain unknown.

Conclusion

Mof regulates α-cell differentiation and function via acetylating H4K16ac and H4K16ac binding to Pax6 and Foxa2 promoters. Mof inhibition may be a potential interventional target for T2DM, which led to decreased α-cell ratio but increased PC1/3-positive α-cells.

Methods

Mof overexpression and chromatin immunoprecipitation sequence (ChIP-seq) based on H4K16ac were applied to determine the effect of Mof on α-cell transcriptional factors and underlying mechanism. Then we administrated mg149 to α-TC1-6 cell line, wild type, db/db and diet-induced obesity (DIO) mice to observe the impact of Mof inhibition in vitro and in vivo. In vitro, western blotting and TUNEL staining were used to examine α-cell apoptosis and function. In vivo, glucose tolerance, hormone levels, islet population, α-cell ratio and the co-staining of glucagon and PC1/3 or PC2 were examined.

Results

Mof activated α-cell-specific transcriptional network. ChIP-seq results indicated that H4K16ac targeted essential genes regulating α-cell differentiation and function. Mof activity inhibition in vitro caused impaired α-cell function and enhanced apoptosis. In vivo, it contributed to ameliorated glucose intolerance and islet dysfunction, characterized by decreased fasting glucagon and elevated post-challenge insulin levels in T2DM mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。